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1. Introduction

Condensation heat transfer along isothermal vertical

surfaces has many engineering applications in heat

exchanger type equipment. The problem of laminar

®lm condensation of water vapor with and without

noncondensable gases on an isothermal vertical surface

was studied by Minkowycz [1,2] and Fujii [3], just to

name a few. However, Minkowycz's study neglected

the convective and inertia e�ects in the liquid layer as

well as the shear stress at the interface. A good review

of literature and a study on pure forced and pure free

convection may be found in Ref. [3]. In mixed convec-

tion, the boundary layers become nonsimilar. A limited

number of studies [4±11] have been done on mixed

convection condensation and no study has covered the

entire regime from pure forced convection to pure free

convection with the use of a single nonsimilarity par-

ameter. Recently, Shu and Wilks [5,6] studied conden-

sation of saturated vapor along a vertical plate in

mixed convection by perturbation series methods and

modi®ed the Cebeci box method [12] to handle sol-

utions of the coupled di�erential equations. Also,

Winkler et al. [13] solved the entire regime of mixed

convection by dividing it into two regions, one for free

convection dominated conditions and another for
forced convection dominated conditions.
In the present paper, a single nonsimilar parameter

is used to model the entire regime of mixed convection.

This parameter, w, ranges from 0 for pure free convec-
tion to 1 for pure forced convection. The governing
equations are transformed into dimensionless form by

use of the nonsimilar transformation. The local nonsi-
milarity method, as described in Ref. [14], in conjunc-
ture with a ®nite di�erence method is used to solve the

system of di�erential equations. Fluid property data
was taken from textbooks [15,16] and from handbook
[17].

2. Analysis

Consider condensation of a pure vapor along an
impermeable isothermal vertical plate in mixed convec-
tion, as shown in Ref. [13]. The gravitational accelera-

tion, g, is acting downward in the direction of the
¯ow. The ¯ow is assumed to be steady, laminar, and
two-dimensional. A condensate ®lm of thickness d is
then formed adjacent to and along the surface, and a

vapor layer of thickness d� exists between the conden-
sate ®lm and the vapor bulk in the liquid±vapor two-
phase boundary layer ¯ow. The surface of the plate is

maintained at a uniform temperature Tw that is lower
than the vapor temperature. The ¯uid properties are
assumed to be constant except for the variations in

density which induce the buoyancy force. By employ-
ing the laminar boundary layer approximations the
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governing conservation equations for the problem

under study are exactly similar to those in Ref. [13].
The governing equations may be transformed from

the (x, y ) coordinates to the dimensionless coordinates

�w�x�, Z�x, y�� and �w�x�, Z��x, y�� for the liquid and
vapor layers, respectively, by introducing

Z � �y=x�Re1=2x wn,

C � nRe1=2x wnf�w, Z� � �nu1x�1=2wnf�w, Z�
�1�

Z� � ÿu1=n��1=2�yÿ d�x ÿ1=2wn,

C � n�Re1=2x wnF
ÿ
w, Z�

� � �n�u1x�1=2wnFÿw, Z�� �2�

w�x� � Re1=2x =
ÿ
Re1=2x � Gr1=4x

�
,

y � y� � �Tÿ Tw �=
ÿ
T �1 ÿ Tw

� �3�

Substituting Eqs. (1)±(3) into the governing equations,
one can obtain the following system of equations

f 000 � 1
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�
�
rr� ÿ rr�1
rr� ÿ r�r�1

�
�1ÿ w�4

� 1

4
w�1ÿ w�

�
F 00
@F

@w
ÿ F 0

@F 0

@w

�
�6�

y� 00

Pr�1
� 1

4
�3ÿ w�Fy� 0

� 1

4
w�1ÿ w�

�
y� 0
@F

@w
ÿ F 0

@y�

@w

�
�7�

It should be noted that it was found that n � ÿ1
and the following useful expression was derived from
the de®nition of w, Grx � gx 3=n 2 and Rex �
u1x=n: wdw=dx � ÿw�1ÿ w�=4:
The boundary conditions become the following

f 0�w, 0� � 0,

�3ÿ w�f�w, 0� ÿ w�1ÿ w� @ f
@w
�w, 0� � 0

y�w, 0� � 0 f 0�w, Zi � � F 0�w, 0�

�8�

Rprop

�
�3ÿ w�f�w, Zi � ÿ w�1ÿ w� @ f

@w �w, Zi �
�

� �3ÿ w�F�w, 0� ÿ w�1ÿ w�@F
@w
�w, 0� �9�

Nomenclature

f, F dimensionless stream function for liquid and
vapor layers, respectively

h(x ) local heat transfer coe�cient

k thermal conductivity
Grx local Grashof number, gx 3=n 2

Nux local Nusselt number, hx=k
Pr Prandtl number, n=a
Rex local Reynolds number, u1x=n
qw local surface heat ¯ux

T temperature
T1 free stream temperature
Tw wall temperature
u, v velocity components in x- and y-direction

u1 free stream velocity
x, y axial and normal coordinates
a thermal di�usivity

d boundary layer thickness
Z pseudo-similarity variable

y dimensionless temperature
m dynamic viscosity
n kinematic viscosity

w nonsimilar parameter, Re1=2x =�Re1=2x � Gr1=4x �
r ¯uid density
c, C stream functions for the liquid and vapor

layer, respectively

Subscripts

1 free stream condition
w wall condition
i interfacial condition

Superscripts
� vapor layer quantity
0 partial di�erentiation with respect to Z, Z� for

the liquid and vapor layers, respectively
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Rpropf
00�w, Zi � � F 00�w, 0�,

y�w, Zi � � y��w, 0� � yi �10�

y 0�w, Zi � �
ÿ
k�=k

�ÿ
n=n�

�1=2
y� 0�w, 0�

�
�
1

4
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4
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�

� Prwhfg

Cp

ÿ
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�
�11�

F 0�w,1� � w 2, y��w,1� � 1 �12�

The primes denote partial di�erentiation with respect

to Z and Z� for the liquid and vapor layers, respect-
ively. The viscous parameter Rprop can be expressed
as the following: Rprop � �rm=�r�m���1=2:
Some of the physical quantities of interest include

the velocity components u and v in the x- and y-direc-
tions, the wall shear stress tw, de®ned as
tw � m�@u=@y�y�0, the local Nusselt number

Nux � hx=k, where h � qw=�Tw ÿ Ti�, and the conden-
sate mass ¯ux, _mx: They are given by

u � u1wÿ2f 0�w, Z�, u� � u1wÿ2F 0
ÿ
w, Z�

� �13�

v � ÿ n
x
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w

�
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4
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4
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ÿ 1
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� �14�
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"
1
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ÿ
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�# �15�

tw � �m=x�u1wÿ3Re1=2x f 00�w, 0� �16�

Nux
ÿ
Re1=2x � Gr1=4x

�ÿ1� y 0�w, 0�=yi �17�

_mx

ÿ
Re1=2x � Gr1=4x

�ÿ1�x=m�
� 1

4
�3ÿ w�f�w, Zi � ÿ

1

4
w�1ÿ w� @ f

@w �w, Zi � �18�

Now we will examine the density ratio in Eq. (6). Let

this ratio be denoted as W which has the following ex-
pression: W � �rr� ÿ rr�1�=�rr� ÿ r�r�1�: Note that

this ratio will be equal to zero for saturated vapors
since r� � r�1 for saturated vapors. For superheated
vapor, W6�0 and it may prove di�cult to express W

accurately for a variable property case with super-
heated vapors.

3. Methods of solution

In order to apply the local nonsimilarity method,
one takes @=@w of the governing equations and their
boundary conditions to obtain a system of equations

for @ f=@w, @F=@w, @y=@w, @y�=@w, and their boundary
conditions. Terms involving w@ 2f=@w 2, w@ 2F=@w 2,
w@ 2y=@w 2, w@ 2y�=@w 2 are then neglected in the latter

set of equations. This results in a system of equations
for f, F, y, y�, @ f=@w, @F=@w, @y=@w, @y�=@w, along
with the corresponding boundary conditions (see, for
example, [14]). For a given Zi, a guess at the value of

f 0�w, Zi� is made and a ®nite di�erence method is used
to solve the f and @ f=@w equations.
Next, the F and @F=@w equations may be solved

using the same ®nite di�erence method. The conver-
gence criteria for the method used is as follows. First,
the iterations are stopped when successive iterations of

the shear at the wall and the shear at the interface are
within 10ÿ6. Next, the solution is assumed correct
when the condition jRprop f

00�w, Zi�ÿF 00�w, 0�jR10ÿ3 is
met. If this condition is not met, a new guess of

f 0�w, Zi� is made and the process repeated until the
shear stress condition at the interface is met. This gen-
erally occurs within 10 iterations. Next, a solution to

the y and @y=@w may be carried out. A solution to the
y� and @y�=@w is not needed since only saturated
vapors are being considered. Iterations on the y and

@y=@w systems are stopped when the di�erence in the
heat ¯ux at the wall between the two successive iter-
ations are within 10ÿ6. Step sizes of DZ � 0:01, DZ� �
0:02 and Dw � 0:02 were used.

4. Results and discussion

Representative numerical results for saturated steam
and R-134a at one atmospheric pressure are presented

in this section. By ®xing the pressure, the temperature
of the condensate at the interface will be equal to its
saturation temperature at that pressure. A wall tem-

perature of 808C was chosen for all steam calculations
and ÿ408C was chosen for all refrigerant calculations.
Since a constant property model is not physically re-

alistic, a reference temperature must be chosen to
evaluate physical properties. The reference temperature
chosen was that used by Minkowycz [1] and is given
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Fig. 1. f 00 and F 00 pro®les for saturated steam, Rprop � 200, for the entire regime of mixed convection.

Fig. 2. f 00�w, 0� values for saturated vapor for the entire regime of mixed convection.
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by

Treference � Tw � 0:31�Ti ÿ Tw � �19�

This rule for the liquid layer brings constant property

heat transfer results to within20.3% of those obtained
from variable property solutions for free convection. It
is not known how the constant-property results will

compare with variable-property results in mixed con-
vection. A value of Rprop � 200 was used for saturated
steam, with Prw � 2:25: For R-134a, Rprop � 100 and
Prw � 5 were used. The Prandtl number for the vapor

layer is not needed since only saturated vapors are
being considered.
The velocity and temperature pro®les, f 0�w, Z� and

y�w, Z�, for saturated steam are shown in [18], and
omitted here to save space. A representative ®lm thick-
ness of Zi � 0:4 was chosen for plotting the results.

Fig. 1 shows the shear stress distribution throughout
the liquid and vapor layers. As one can see, there is
signi®cant dimensionless shear stress at the interface

which proves that the common assumption of a shear

free interface is inappropriate. The behavior of the vel-

ocity, temperature, and shear pro®les for the refriger-

ant are similar, and they are therefore not shown to

conserve space.

To ®nd the local Nusselt number and the local wall

shear stress, one needs to know the values of y 0�w, 0�
and f 00�w, 0�: These quantities at selected values of w
are listed in [18] for steam and R-134a for Zi � 0:4, 0.5
and 0.6. As illustrated in Fig. 2, the dimensionless wall

shear stress can be seen to increase by two orders of

magnitude from pure forced convection �w � 1� to pure

free convection �w � 0�: However, in Fig. 3, one can

see that the Nusselt number parameter only increases

slightly with a decrease in w from 1 to 0. At ®rst glance

of the results, it may seem that the actual Nusselt

number is greater for pure free convection and pure

forced convection than it is for mixed convection.

However, this is not the case. Consider, for example,

Rprop � 200, Prw � 2:25, Zi � 0:5 and w � 0:9: If the

Reynolds number is taken as Rex � 1000, the corre-

Fig. 3. Nux�Re1=2x � Gr1=4x �ÿ1 for saturated vapor for the entire regime of mixed convection.
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sponding Grasho� number can be found from the w
expression to be Grx � 152:4: Using the y 0�w, 0� values
listed in [18], the local Nusselt number for mixed con-

vection �Rex � 1000, Grx � 152:4� is 70.3, but for pure

forced convection �Rex � 1000� and pure free convec-

tion �Grx � 152:4�, the corresponding Nusselt numbers

are found to be 63.2 and 7.1, respectively. From these

results, it is obvious that the predicted value of the

local Nusselt number for mixed convection is higher

than that for pure forced convection and pure free

convection. Fig. 2 may also be misleading at ®rst

glance. For the mixed convection conditions mentioned

above, the dimensionless shear stress parameter,

twx
2=�mn�, has the value of 56.5, while for pure forced

convection and pure free convection this quantity is 55

and 21.5, respectively, illustrating that the wall shear

stress is higher for mixed convection than for pure

forced and pure free convection.

The condensate thickness, as expressed in terms of

Zi, a�ects both the wall shear stress and wall heat ¯ux,

as can be seen in [18]. For both ¯uids, the wall heat

¯ux is seen to decrease with an increase in Zi, while the

wall shear stress is shown to increase with an increase

in Zi: A physical explanation for this has already been

given in [13].

The last quantity of interest is the condensate mass

¯ux, which is shown in Fig. 4 for both Rprop � 200 and

100. It can clearly be seen from the ®gure that an

increase in w causes a decrease in the dimensionless

condensate mass ¯ux. However, near w � 1, the dimen-

sionless condensate mass ¯ux is slightly greater than

that of w values near 1, say, w � 0:9: Just as in the

Nusselt number argument above, this does not imply

that the actual condensate mass ¯ux is lower for mixed

convection.

Finally, to give an idea of the accuracy of the

method used, results for w � 0 and 1 were compared to

those obtained by the Runge±Kutta method since for

these two cases the equations reduce to ordinary di�er-

ential equations. With Zi � 0:4 and Rprop � 200, the

Runge±Kutta method gives f 00�0, 0� � 0:3983 and

y 0�0, 0� � 2:5034 for w � 0, and f 00�1, 0� � 0:00174 and

y 0�1, 0� � 2:5000 for w � 1: These values di�er less

than 1.8% from those listed in [18]. These values also

compare well with the previous study of Winkler et al.

[13]. The present results are compared with those of

Shu and Wilks [5]. They employed the nonsimilar par-

ameter x � gx=u 2
1: Their value of x � 0:2, for instance,

corresponds to a value of w � 0:599: For Prw � 10,

Rprop � 10, and Zi � 1:04, Shu and Wilks [5] give

NuxRe
ÿ1=2
x � 1:6902, whereas the present analysis for

these parametric values gives NuxRe
ÿ1=2
x � 1:7046,

Fig. 4. Dimensionless mass ¯ux for saturated vapor for the entire regime of mixed convection.
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which is 0.9% o� from their result. This also compares
well with NuxRe

ÿ1=2
x � 1:7089 given by Winkler et al.

[13].

5. Concluding remarks

Condensation from a vertical ¯at plate in mixed
convection was studied analytically. The analysis intro-
duced a new nonsimilarity variable w, which ranges

from zero for pure free convection to one for pure
forced convection. The parameter w was found to have
the expression w � Re1=2x =�Re1=2x � Gr1=4x �: Results for
saturated steam and R-134a were presented for rep-

resentative ®lm thicknesses. It has been found that
mixed convection signi®cantly increases the dimension-
less wall shear stress and the dimensionless condensate

mass ¯ux, but to a lesser degree, it also increases the
dimensionless wall heat ¯ux. A comparison of the
present results with others has led to the conclusion

that the present approach is comprehensive, accurate
and simple, and is therefore superior to earlier studies.
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